Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int Microbiol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388811

ABSTRACT

Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.

2.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34642605

ABSTRACT

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

3.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34696443

ABSTRACT

In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAID and sequenced 1927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (>90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2), firstly reported in this study. Our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in Rio de Janeiro. Altogether, this might have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/mortality , Child , Child, Preschool , Disease Hotspot , Epidemiological Monitoring , Female , Gene Library , Humans , Infant , Infant, Newborn , Male , Middle Aged , Phylogeny , Retrospective Studies , Young Adult
6.
Protist ; 170(6): 125698, 2019 12.
Article in English | MEDLINE | ID: mdl-31760169

ABSTRACT

Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.


Subject(s)
Bacterial Physiological Phenomena , Proteome/genetics , Symbiosis/physiology , Trypanosomatina/microbiology , Trypanosomatina/genetics
7.
PeerJ ; 6: e5551, 2018.
Article in English | MEDLINE | ID: mdl-30186700

ABSTRACT

Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process.

8.
Sci Rep ; 8(1): 10755, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30018343

ABSTRACT

Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum ß-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.


Subject(s)
Drug Discovery/methods , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Genomics , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Metabolic Networks and Pathways , Metabolomics , Models, Molecular , Protein Structure, Tertiary , Transcriptome
9.
Cell Microbiol ; 20(2)2018 02.
Article in English | MEDLINE | ID: mdl-29113016

ABSTRACT

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Subject(s)
Central Nervous System/microbiology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Fungal Proteins/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Brain/metabolism , Brain/microbiology , Calcineurin/metabolism , Calcium/metabolism , Cell Line , Cryptococcosis/metabolism , Cryptococcosis/microbiology , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Meningoencephalitis/metabolism , Meningoencephalitis/microbiology , Mice , Mice, Inbred BALB C , Vacuoles/metabolism , Vacuoles/microbiology , Virulence/physiology , Virulence Factors/metabolism
10.
PLoS Negl Trop Dis ; 11(7): e0005824, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28759591

ABSTRACT

BACKGROUND: The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. METHODS: We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). PRINCIPAL FINDINGS/CONCLUSIONS: We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data.


Subject(s)
Drug Resistance/genetics , Genetics, Population , Plasmodium vivax/genetics , Antimalarials , Brazil , Colombia , DNA, Protozoan/genetics , Linkage Disequilibrium , Mexico , Multidrug Resistance-Associated Protein 2 , Peru , Polymorphism, Single Nucleotide
11.
Biol Cell ; 109(6): 238-253, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369980

ABSTRACT

BACKGROUND INFORMATION: The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. RESULTS: Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. CONCLUSIONS: The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. SIGNIFICANCE: Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the organisation and function of this structure in unicellular organisms.


Subject(s)
Cytoskeleton/chemistry , Protozoan Proteins/chemistry , Trichomonadida/metabolism , Cell Fractionation , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Microscopy, Electron , Protozoan Proteins/metabolism , Protozoan Proteins/ultrastructure , Tandem Mass Spectrometry , Trichomonadida/chemistry , Trichomonadida/ultrastructure
12.
Genome Announc ; 2(1)2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24482508

ABSTRACT

Trypanosoma cruzi affects millions of people worldwide. Clinical variability of Chagas disease can be due to the genetic variability of this parasite, requiring further genome studies. Here we report the genome sequence of the T. cruzi Dm28c clone (TcI), a strain related to the sylvatic cycle of the parasite.

13.
Genome Announc ; 2(1)2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24435867

ABSTRACT

The draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1A(T) (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.7 Mb, consisting of 41 scaffolds containing a total of 5,625 predicted open reading frames, including many genes encoding enzymes and transporters involved in d-xylose fermentation.

14.
Nucleic Acids Res ; 42(Database issue): D426-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24106090

ABSTRACT

The laminin (LM)-database, hosted at http://www.lm.lncc.br, was published in the NAR database 2011 edition. It was the first database that provided comprehensive information concerning a non-collagenous family of extracellular matrix proteins, the LMs. In its first version, this database contained a large amount of information concerning LMs related to health and disease, with particular emphasis on the haemopoietic system. Users can easily access several tabs for LMs and LM-related molecules, as well as LM nomenclatures and direct links to PubMed. The LM-database version 2.0 integrates data from several publications to achieve a more comprehensive knowledge of LMs in health and disease. The novel features include the addition of two new tabs, 'Neuromuscular Disorders' and 'miRNA--LM Relationship'. More specifically, in this updated version, an expanding set of data has been displayed concerning the role of LMs in neuromuscular and neurodegenerative diseases, as well as the putative involvement of microRNAs. Given the importance of LMs in several biological processes, such as cell adhesion, proliferation, differentiation, migration and cell death, this upgraded version expands for users a panoply of information, regarding complex molecular circuitries that involve LMs in health and disease, including neuromuscular and neurodegenerative disorders.


Subject(s)
Databases, Protein , Laminin/metabolism , Neuromuscular Diseases/metabolism , Animals , Humans , Internet , Mice , MicroRNAs/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Rats
15.
Parasitology ; 141(2): 241-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24135238

ABSTRACT

Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies.


Subject(s)
Adenosine Triphosphatases/metabolism , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Golgi Apparatus/ultrastructure , Protozoan Infections, Animal/parasitology , Tritrichomonas foetus/ultrastructure , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Base Sequence , Cattle , Female , Golgi Apparatus/chemistry , Golgi Apparatus/metabolism , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission/veterinary , Microscopy, Fluorescence/veterinary , Models, Molecular , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Sequence Alignment/veterinary , Sequence Analysis, DNA/veterinary , Trichomonas vaginalis/enzymology , Trichomonas vaginalis/immunology , Tritrichomonas foetus/enzymology , Tritrichomonas foetus/genetics , Tritrichomonas foetus/immunology
16.
Environ Microbiol ; 15(10): 2712-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23607663

ABSTRACT

Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.


Subject(s)
Deltaproteobacteria/genetics , Ferrosoferric Oxide , Genome, Bacterial/genetics , Iron , Magnetosomes/genetics , Sulfides , Conserved Sequence , Deltaproteobacteria/classification , Magnetics , Molecular Sequence Data , Multigene Family/genetics , Phylogeny
17.
Environ Microbiol ; 15(8): 2267-74, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23438345

ABSTRACT

Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.


Subject(s)
Bacteria/classification , Bacteria/genetics , Magnetosomes/genetics , Phylogeny , Bacteria/metabolism , Base Sequence , DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Genomics , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...